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Perf Eval of Comp Systems

Laplace transform of a sum

Let X and Y be independent random variables with L-
transforms 𝐹𝑋 𝑠 , 𝐹𝑌 𝑠 (from now we use 𝑓𝑋

∗(𝑠) and 
𝑓𝑌
∗(𝑠) ).

𝑓𝑋+𝑌
∗ 𝑠 = 𝐸[𝑒−𝑠(𝑋+𝑌)]

= 𝐸[𝑒−𝑠𝑋𝑒−𝑠𝑌]

= 𝐸[𝑒−𝑠𝑋]𝐸[𝑒−𝑠𝑌] (independence)

= 𝑓𝑋
∗(𝑠)𝑓𝑌

∗(𝑠)

thus
𝑓𝑋+𝑌
∗ (𝑠)=𝑓𝑋

∗(𝑠)𝑓𝑌
∗(𝑠) 2
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Calculating moments with the aid of Laplace transform
By derivation one sees

𝑓∗
′
𝑠 =

d

ds
𝐸 𝑒−𝑠𝑋 = 𝐸[−𝑋𝑒−𝑠𝑋]

Similarly, the nth derivative is

𝑓∗
(𝑛)

𝑠 =
𝑑𝑛

d𝑠𝑛
𝐸 𝑒−𝑠𝑋 = 𝐸 (−𝑋)𝑛𝑒−𝑠𝑋

Evaluating these at s = 0 one gets

𝐸 𝑋 = −𝑓∗
′
0

𝐸 𝑋2 = +𝑓∗
′′
0

𝐸 𝑋𝑛 = (−1)𝑛𝑓∗
(𝑛)

0
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Laplace transform of a random sum
Consider the random sum
Y = X1 + · · · + XN

where the Xi are i.i.d. with the common L-transform𝑓𝑋
∗(𝑠)and

N ≥ 0 is a integer-valued r.v. with the generating function 𝒢𝑁(𝑧) .

𝑓𝑌
∗ 𝑠 = 𝐸 𝑒−𝑠𝑌

= 𝐸[𝐸[𝑒−𝑠𝑌|𝑁]] (outer expectation with respect to 
variations of N)

= 𝐸[𝐸[𝑒−𝑠(X1 + · · · + XN)|𝑁]] (in the inner expectation N is fixed)

= 𝐸[𝐸[𝑒−𝑠(X1 ) ]· · ·𝐸[𝑒−𝑠(XN ) ]|𝑁] (independence)
= 𝐸[(𝑓𝑋

∗(𝑠))𝑁]
= 𝒢𝑁(𝑓𝑋

∗(𝑠)) (by the definition 𝐸 𝑧𝑁 = 𝒢𝑁(𝑧))
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Uniform distribution X ∼ U(a, b) models the fact that any interval of length δ
between a and b is equally likely.

Definition:The pdf of X is constant in the interval (a, b):

i.e. the value X is drawn randomly in the interval (a, b)

Mean and variance are as follows:

(115)

(116)V[X]=න
−∞

∞

𝑥 −
𝑎 + 𝑏

2

2

𝑓 𝑥 𝑑𝑥 =
1

12
(𝑏 − 𝑎)2E[X]=׬−∞

∞
𝑥𝑓 𝑥 𝑑𝑥 =

𝑎+𝑏

2

𝑓𝑋 𝑥 =
1

𝑏−𝑎
𝑎 ≤ 𝑥 ≤ 𝑏 𝐹𝑋 𝑥 =

𝑥 − 𝑎

𝑏 − 𝑎
𝑎 ≤ 𝑥 < 𝑏 , 𝐹𝑋 𝑥 =1   𝑏 ≤ 𝑥
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Uniform distribution cntd. 

Uniform distribution (continued)
Let U1, . . . , Un be independent uniformly distributed random 
variables, Ui ∼ U(0, 1).

• The number of variables which are ≤ x (0 ≤ x ≤ 1)) is ∼ Bin(n, x)

– the event {Ui ≤ x} defines a Bernoulli trial where the 
probability of success is x

6
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Uniform distribution cntd. 

Uniform distribution (continued)
• Let U(1) , . . . , U(n) be the ordered sequence of the 
values.
Define further U(0) = 0 and U(n+1) = 1.
It can be shown that all the intervals are identically 
distributed and

P{U(i+1) − U(i) > x} = (1 − x)n i = 1, . . . , n

– for the first interval U(1) −U(0) = U(1) the result is 
obvious because U (1) = min(U1, . . . , Un)
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7.5. Exponential(𝜆) distribution

(Note that sometimes the shown parameter is 
1

𝜆
, i.e. the mean of the distribution)

Definition: X ∼ Exp(𝜆), if:

x≥0

Mean and variance are as follows:

x ≥ 0.   (111)

(112)𝐸 𝑋 =
1

𝜆
V 𝑋 =

1

𝜆2

𝑓𝑋 𝑥 = 𝜆𝑒−𝜆𝑥 𝐹𝑋 𝑥 = 1 − 𝑒−𝜆𝑥,
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7.5. Exponential distribution cntd.

Laplace transform and moments of exponential distribution
The Laplace transform of a random variable with the distribution Exp(λ) is

𝑓∗ 𝑠 = න
−∞

∞

𝑒−𝑠𝑡𝜆𝑒−𝜆𝑡𝑑𝑡 =
𝜆

𝜆 + 𝑠
With the aid of this one can calculate the moments:

𝐸 𝑋 = −𝑓∗
′
0 = ቤ

𝜆

(𝜆 + 𝑠)2
𝑠=0

=
1

𝜆

𝐸 𝑋2 = +𝑓∗
′′
0 = ฬ

2𝜆

(𝜆+𝑠)3 𝑠=0
=

2

𝜆2

𝑉 𝑋 = 𝐸 𝑋2 − 𝐸[𝑋]2 =
1

𝜆2

𝐸 𝑋 =
1

𝜆
𝑉 𝑋 =

1

𝜆2
9
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7.5. Exponential distribution cntd.

The memoryless property of exponential distribution
Assume that X ∼ Exp(λ) represents e.g. the duration of a call.
What is the probability that the call will last at least time x more given that it has 
already lasted the time t:

P{X > t + x|X > t} =
P{X > t + x, X > t}

P{X > t}

=
P{X > t + x}

P{X > t}

=
𝑒−𝜆(𝑡+𝑥)

𝑒−𝜆𝑡
= 𝑒−𝜆𝑥 = P{X > x}

P{X > t + x, X > t} = P{X >x}

• The distribution of the remaining duration of the call 
does not at all depend on the time the call has already 
lasted has the same Exp(λ) distribution as the total 
duration of the call.
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Example of the use of the memoryless property

A queueing system has two servers. The service times are
assumed to be exponentially distributed 
(with the same parameter). Upon arrival of 
a customer (◊) both servers are occupied (×) but there 
are no other waiting customers.

The question: what is the probability that the customer (◊) will be the last to depart 
from the system?
The next event in the system is that either of the customers
(×) being served departs and the customer enters (◊) the
freed server. 

By the memoryless property, from that point on the (remaining) service times of both 
customers (◊) and (×) are identically (exponentially) distributed.
The situation is completely symmetric and consequently the probability that the 
customer (◊) is the last one to depart is 1/2.
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The ending probability of an exponentially distributed interval

Assume that a call with Exp(λ) distributed duration has lasted the time t.

What is the probability that it will end in an infinitesimal interval of length h?

P{X ≤ t + h | X > t} = P{X ≤ h} (memoryless)

= 1 − 𝑒−λh

= 1 − (1 − λh + 1
2

(λh)2 − · · ·)

= λh + o(h)

The ending probability per time unit = λ (constant!)

12
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The minimum and maximum of exponentially distributed random variables

Let X1 ∼ · · · ∼ Xn∼ Exp(λ) (i.i.d.)

The tail distribution of the minimum is

P{min(X1, . . . , Xn) > x} = P{X1 > x} · · · P{Xn > x} (independence)

𝑒−λx
𝑛
= 𝑒−nλx

The minimum obeys the distribution Exp(nλ).

The cdf of the maximum is

P{max(X1, . . . , Xn) ≤ x} = 1 − 𝑒−λx
𝑛

13
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Calculating E[max(X1, . . . , Xn)] Method 1:

𝐸 𝑁 = ෍

𝑘=0

∞

𝑃(𝑁 > 𝑘) 𝐸[𝑋] = න

0

∞

1 − 𝐹 𝑥 𝑑𝑥 =න

0

∞

𝑅𝑋(𝑡)𝑑𝑡

E[max(X1, . . . , Xn)]= න

0

∞

𝑅𝑋 𝑡 𝑑𝑡 = න

0

∞

1 − 1 − 𝑒−λt
𝑛

𝑑𝑡 =

1

λ
න

0

1
1 − 𝑢𝑛

1 − 𝑢
𝑑𝑢 =

1

λ
න

0

1

෍

i=1

𝑛

𝑢𝑖−1 𝑑𝑢 =

1

λ
෍

i=1

𝑛

න

0

1

𝑢𝑖−1𝑑𝑢 =
1

λ
อ෍

i=1

𝑛
𝑢𝑖

𝑖
0

1

=
1

λ
෍

i=1

𝑛
1

𝑖
=

1

nλ
+

1

(n−1)λ
+⋯+

1

λ

𝑢 = 1 − 𝑒−λt

ቚ1 − 𝑒−λt
𝑡=0

∞

ቚ𝑑𝑡
0

∞

1−𝑢 𝑛

1−𝑢
=σi=1

𝑛 𝑢𝑖−1

ቚ𝑢
0

1

ቚ1 − 𝑒−λt
𝑡=0

=0

ቚ1 − 𝑒−λt
𝑡=∞

=1

ቤ
𝑑𝑢

λ(1 − 𝑢)
0

1
𝑑𝑢 = λ𝑒−λt𝑑𝑡= λ(1-u)dt
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The ending intensity of the minimum = nλ 

n parallel processes each of which ends with intensity λ independent of 
the others

The expectation can be deduced by 
inspecting the figure

E[max(X1, . . . , Xn)] 

=
1

nλ
+

1

(n−1)λ
+ · · · +

1

λ

~Exp(nλ) ~Exp(λ)

~Exp((n-1)λ)

~Exp((n-2)λ)

Calculating E[max(X1, . . . , Xn)] Method 2:

15



Performability : background

Q1: find distribution of Y=aX+b

A: 𝑓𝑌(𝑦) = ቐ
1

𝑎
𝑓𝑋(

𝑦−𝑏)

𝑎
)

0

Q2: if X ∼ Exp(𝜆), what is distribution of Y=rX

A: 𝑓𝑋(𝑥) = 𝜆𝑒−𝜆𝑥

Using Q1

𝑓𝑌(𝑦) =
1

𝑟
𝜆𝑒−𝜆

𝑦
𝑟

Thus Y is an exponential with parameter 𝜆/𝑟

If   x ∈ Y=aX+b

otherwise

06-Q2

16



Performability : Example

Consider a system with n processors. In the 

beginning we let all n processors be active, 

performing different computations,

Thus the total computing capacity is n (where a 

unit of computing capacity corresponds to that 

of one active processor).

17



Performability : Example

Let X1 , X2 , . . . , Xn be the times to failure of the n 

processors. 

After a period of time  Y1 =min {X1 , X2 , . . . , Xn } 

only n - 1 processors will be active and the computing 

capacity of the system will have dropped to n - 1. 

The cumulative computing capacity that the system 

supplies until all processors have failed is then given 

by the random variable:

Cn = nY1 + (n- 1)(Y2 - Y1) + · · · + (n- J)(Yj+1 - Yj) + · · · + (Yn

– Yn-1).

18



Performability : Example

we note that Cn is the area under the curve. 

Fig: Computing capacity as a function of time
19



Performability : Example

Cn "computation before failure" Beaudry [BEAU 
1978]
"performability"  Meyer [MEYE 1980]

Distribution of Cn 

first we obtain the distribution of Yj+1 - Yj · 
assume processor lifetimes are mutually 
independent EXP (𝜆) RVs. we claim that the 
distribution of 
Yj+1 - Yj is Exp((n − j)𝜆) 

20



Performability : Example

Define Y0 = 0. 
we know that  Y1 =min {X1 , X2 , . . . , Xn }∼ Exp(n𝜆), 
Thus our claim holds for j = 0. 

After j processors have failed,(n-j) processors remain.

the residual lifetimes of the remaining (n - j) processors, 
denoted by W1 , W2 , . . . , Wn-j are each exponentially 

distributed with parameter 𝜆 due to the memoryless 

property of the exponential distribution. 

21



Performability : Example (cntd.)

Note that Yj+1 - Yj is simply the time between the (j + 1)th
and the jth failure; that is,
Yj+1 - Yj = min {W1 , W2 , . . . , Wn-j }

It follows that Yj+1 - Yj is ∼ Exp((n − j)𝜆) .

22



Performability : Example (cntd.)

Hence, using 06-Q2  (i.e. if X ∼ Exp(𝜆), dist. of Y=rX is 

𝑓𝑌(𝑦) =
1

𝑟
𝜆𝑒−𝜆

𝑦

𝑟 )we get:

X ∼ Exp((n-j)𝜆), dist. of Y=(n-j)X is (r=n-j) 

ቤ𝑓𝑌(𝑦) =
1

𝑟
(𝑛 − 𝑗)𝜆𝑒−(𝑛−𝑗)𝜆

1
𝑟

𝑟=𝑛−𝑗

Thus (n-j) (Yj+1 - Yj ) is ∼ Exp(𝜆) .

Therefore, Cn is the sum of n independent identically 
distributed exponential RVs, 
That is Cn is n-stage Erlang distributed with parameter 𝜆. 

23
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Erlang distribution X ∼ Erlang(n, λ) Also denoted Erlang-n(λ).
X is the sum of n independent random variables with the distribution Exp(λ)

X = X1 + · · · + Xn Xi ∼ Exp(λ) (i.i.d.)
The Laplace transform is

𝑓∗ 𝑠 =
𝜆

𝜆+𝑠

𝑛

By inverse transform (or by recursively convoluting the density function) one 
obtains the pdf of the sum X

𝑓 𝑥 =
(𝜆𝑥) n−1

𝑛−1 !
𝜆𝑒−𝜆𝑥 x ≥ 0

The expectation and variance of Erlang
are n times those of the Exp(λ) distribution:

𝐸 𝑋 =
𝑛

𝜆
𝑉 𝑋 =

𝑛

𝜆2

Note: 
Erlang(1, λ) (Erlang-1(λ)= E1, λ ) is exp(λ).
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Erlang distribution (continued): gamma distribution

The formula for the pdf of the Erlang distribution can be generalized, 
from the integer parameter n, to arbitrary real numbers by replacing 
the factorial (n − 1)! by the gamma function Γ(n):

𝑓 𝑥 =
(𝜆𝑥) n −1

Γ(n )
𝜆𝑒−𝜆𝑥 Gamma(n, λ) distribution

Gamma function Γ(p) is defined by

Γ(p) = න
0

∞

𝑒−𝑢 𝑢 p −1 𝑑𝑢

By partial integration it is easy to see that 
when p is an integer (i.e. p=n) then,
indeed, Γ(n) = (n − 1)!

25
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Erlang distribution (continued)

Example. The system consists of two servers. Customers

arrive with Exp(λ) distributed interarrival times. 

Customers are alternately sent to servers 1 and 2.

The interarrival time distribution of customers arriving at

a given server is Erlang(2, λ).

26



Erlang distribution (continued)
Proposition. Let Nt, the number of events in an 
interval of length t, obey the Poisson distribution:
Nt ∼ Poisson(λt)
Then the time Tn from an arbitrary event to
the nth event thereafter obeys 

the distribution Erlang(n, λ).

Proof.

The axis is for 

both t and N

FTn(t) = P{Tn ≤ t} = P{Nt ≥ n}

σi=𝑛
∞ P{Nt = i} = σi=𝑛

∞ (𝜆𝑡) i

i! 𝑒−𝜆𝑡

𝑓𝑇𝑛 =
𝑑

𝑑𝑡
𝐹𝑇𝑛 𝑡 =෍

i=𝑛

∞
𝑖𝜆(𝜆𝑡)𝑖−1

𝑖!
𝑒−𝜆𝑡 −෍

i=𝑛

∞
(𝜆𝑡)𝑖

𝑖!
𝜆𝑒−𝜆𝑡

=σi=𝑛
∞ (𝜆𝑡)𝑖−1

(𝑖−1)!
𝜆𝑒−𝜆𝑡 − σi=𝑛

∞ (𝜆𝑡)𝑖

𝑖!
𝜆𝑒−𝜆𝑡

=
(𝜆𝑡)𝑛−1

(𝑛 − 1)!
𝜆𝑒−𝜆𝑡 +෍

i=𝑛

∞
(𝜆𝑡)𝑖

𝑖!
𝜆𝑒−𝜆𝑡 −෍

i=𝑛

∞
(𝜆𝑡)𝑖

𝑖!
𝜆𝑒−𝜆𝑡

=
(𝜆𝑡)𝑛−1

(𝑛 − 1)!
𝜆𝑒−𝜆𝑡

Nt occurrence

1    2         3                 n

0 T1 T2 Tn t 

N

t

Tn ≤ t

Nt ≥ n
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Erlang distribution (continued) method II
Proof.
let W denote the waiting time until 
the nth event occurs and find the distribution of W

The axis is for 

both t and N
FTn(t) = P{Tn ≤ t} = 1-P{Tn >t}
the waiting time Tn is greater than some value t only if 
there are fewer than n events in the interval [0,t]. i.e.:
P{Tn >t} = P(fewer than n events in [0,w])
A more specific way of writing that is:
= P(0 events or 1 event or … or (n−1) events in [0,t])

mutually exclusive "ors" mean that we need to add up 
the probabilities of having 0 events occurring in the 
interval [0,t], 1 event occurring in the interval [0,t], ..., 
up to (n−1) events in [0,t].

σi=0
𝑛−1 P{Nt = i} = σi=0

𝑛−1 (𝜆𝑡) i

i!
𝑒−𝜆𝑡

Thus:

FTn(t) = 1-σi=0
𝑛−1 (𝜆𝑡) i

i! 𝑒−𝜆𝑡=σi=𝑛
∞ (𝜆𝑡) i

i! 𝑒−𝜆𝑡

Nt occurrence

1    2         3                 n

0 T1 T2 Tn t 

N

t

Tn ≤ t

Nt ≥ n

28
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Normal distribution X ∼ N(µ, σ2)

The pdf of a normally distributed random variable X with parameters µ 
and σ2 is

𝑓𝑋 𝑥 =
1

2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2

Parameters µ and σ2 are expectation and variance are of the distribution  
E[X] = µ   ,  V[X] = σ2

Normal Standard Z ∼ N(0, 1)

𝑓𝑍 z =
1

2𝜋
𝑒−

1
2z2

0 and 1 are expectation and variance are of the distribution  E[Z] = 0   ,  
V[Z] =1

29
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Proposition: If X ∼ N(µ, σ2), then Y = αX + 𝛽 ∼ N(αµ + 𝛽, α2σ2).
Proof:

𝐹𝑌 𝑦 = P{Y ≤ y} = P{X ≤
y−𝛽

α } = 𝐹𝑋
y−𝛽

α

z= αx+ 𝛽= න
−∞

𝑦−𝛽
α 1

2𝜋𝜎
𝑒
−
(𝑥−𝜇)2

2𝜎2 𝑑𝑥

x=
z−𝛽
α =

z+µ/σ
1/σ

=σz+µ

ቚ𝑥
−∞

𝑦−𝛽
α

→ ቚ𝑧
−∞

α𝑦−𝛽α +𝛽
→ ቚ𝑧

−∞

𝑦

𝑑𝑥 →
dz

α

(𝑥−𝜇)2

2𝜎2
=
(σz+𝜇−𝜇)2

2𝜎2
=
𝑧2

2

α𝜎=
1

𝜎
𝜎=1

= න
−∞

𝑦 1

2𝜋(α𝜎)
𝑒−

1
2 z− α𝜇+𝛽 2

/(α𝜎)2𝑑z

∞−׬=
𝑦 1

2𝜋
𝑒−

1

2
z2𝑑z

Specifically if we set (α = 1/σ, 𝛽 = −µ/σ)

Then we find z=
𝑥−𝜇

𝜎
∼ N(0, 1) 

𝐹𝑌 𝑦 = න
−∞

𝑦−𝛽
α 1

2𝜋𝜎
𝑒
−
(𝑥−𝜇)2

2𝜎2 𝑑𝑥

30

Note: Denote the PDF of a N(0,1) random variable by Φ(x). Then

𝐹𝑋 𝑥 = P{X ≤x} = P{σz+µ≤x} = P{Z ≤
x− µ

σ } =Φ(
x− µ

σ )
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Multivariate Gaussian (normal) distribution

Let X1 , . . . , X𝑛 be a set of Gaussian (i.e. normally distributed) random 
variables with expectations µ1 , . . . , µ𝑛 and covariance matrix

Γ =
σ11
2 · · ·σ1𝑛

2

... . . . ...
σ𝑛1
2 · · ·σ𝑛𝑛

2

σ𝑖𝑗
2 = Cov[X𝑖,X𝑗] σ𝑖𝑖

2 = V[X𝑖]

Denote X = (X1 , . . . , X𝑛)
T.

The probability density function of the random vector X is

where |Γ| is the determinant of the covariance matrix.

By a change of variables one sees easily that the pdf of the random vector Z = Γ−1/2(X − µ) is

(2𝜋)−𝑛/2exp(−
1
2 zTz) = 2𝜋 𝑒−𝑧1

2/2 · · · 2𝜋 𝑒−𝑧𝑛
2/2

Thus the components of the vector Z are independent N(0,1) distributed random variables.

Conversely, X = µ + Γ1/2Z by means of which one can generate values for X in simulations.
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Appendix



Power Laws

• Two quantities y and x are related by a power law if

• Compare it to                            that decays fast. 

• A (continuous) random variable X follows a power-law
distribution if it has density function 

• Integrating above we find : Cumulative function

αxy −

αCxf(x) −=

  1)(αx
1α

C
xXP −−

−
=

x− ey
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Normalization constant

• Assuming a minimum value xmin

• The density function becomes

• Ref:http://tuvalu.santafe.edu/~aaronc/courses/7000/c
sci7000-001_2011_L2.pdf

( ) 1a
minx1αC −−=

α

minmin x

x

x

1)-(α
f(x)

−









=
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Pareto distribution

• Pareto distribution is pretty much the same 
but we have

• and we usually we require

  βxC'xXP −=

minxx 
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Zipf’s Law

• A random variable X follows Zipf’s law if 

the r-th largest value xr satisfies

• Same as requiring a Pareto distribution

γ
r rx −

  γ1xxXP −
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Zipf &Pareto: 
what they have to do with power-laws

• Zipf
– George Kingsley Zipf, a Harvard linguistics professor, 

sought to determine the 'size' of the 3rd or 8th or 
100th most common word. 

– Size here denotes the frequency of use of the word in 
English text, and not the length of the word itself. 

– Zipf's law states that the size of the r'th largest 
occurrence of the event is inversely proportional to its 
rank: 

y ~ r -b , with b close to unity. 



So how do we go from Zipf to Pareto?

• The phrase "The r th largest city has n inhabitants" is equivalent to 
saying "r cities have n or more inhabitants". 

• This is exactly the definition of the Pareto distribution, except the x 
and y axes are flipped. Whereas for Zipf, r is on the x-axis and n is 
on the y-axis, for Pareto, r is on the y-axis and n is on the x-axis. 

• Simply inverting the axes, we get that if the rank exponent is b, i.e. 

n ~ r−b for Zipf, (n = income, r = rank of person with income n)

then the Pareto exponent is 1/b so that 

r ~ n-1/b (n = income, r = number of people whose income is n or 

higher) 



Zipf’s law & AOL site visits

• Deviation from Zipf’s law

– slightly too few websites with large numbers of 
visitors:



Exponents and averages
• In general, power law distributions do not have an average 

value if a < 2 (but the sample will!)

• This is because the average is given by (for integer values of k)




=
−



=

−


=

==
minminmin

1

1
)(

kkkkkk k
kkkkp

a

a

++++
4

1

3

1

2

1
1n The harmonic series diverges…

n Same holds for continuous values of k

for a finite sample this
will only go to the largest
observed value



80/20 rule

• The fraction W of the wealth in the hands of 
the richest P of the the population is given by

W = P(a−2)/(a−1)

• Example: US wealth: a = 2.1
– richest 20% of the population holds 86% of the 

wealth (0.2(
0.1

1.1
) = 0.20.0909 = 0.86)



Generative processes for power-laws

• Many different processes can lead to power 
laws

• There is no one unique mechanism that 
explains it all

• Next class: Yule’s process and preferential 
attachment



What does it mean to be scale free?

• A power law looks the same no mater what 
scale we look at it on (2 to 50 or 200 to 5000)

• Only true of a power-law distribution!

• p(bx) = g(b) p(x) – shape of the distribution is 
unchanged except for a multiplicative constant

• p(bx) = (bx)−a = b−a x−a

log(x)

log(p(x))

x →b*x
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